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Abstract. An analysis of the stability of squeezing flows between flat plates (consolidation flows) of viscous liquids
reinforced by continuous fibres is presented. The ideal linear fibre-reinforced fluid model is used to model the
composite as an incompressible Newtonian fluid reinforced with inextensible fibres. The development of small fibre
wrinkles initially present in the preimpregnated plies is analysed using linear stability theory. It is shown that when
the flows are lubricated by resin rich layers, two perturbation modes are possible. In the first mode, the wrinkles are
of the same form throughout the thickness of the sample while in the second mode they vary linearly with distance
from the platens. In both cases the stability depends on the normal components of the applied stress. If the only
traction acting in addition to hydrostatic pressure is that due to the squeezing force then the first perturbation mode
is stable. This prediction is in agreement with experimental results.

1. Introduction

Early models of molten fibre-reinforced polymers were developed to describe the compres-
sive flows of sheet moulding compounds (SMC). These compounds consist of sheets of
thermosetting polymer reinforced by a random array of chopped strand fibres laid in the
plane of the sheets. The models were based on incompressible isotropic fluids which had
either Newtonian [1] or non-Newtonian (power law) behaviour [2]. Barone and Caulk [3]
described the molten layers of SMC as a transversely isotropic fluid with the axis of
transverse isotropy perpendicular to the sheets. They developed a constitutive relation which
was comprised of a hydrostatic reaction stress and an extra stress. The extra stress was
assumed to depend on the orientation of the reinforcing strands and linearly on the rate of
strain tensor. They justified this latter assumption by noting that during squeezing flows
these compounds exhibited little inter-ply shearing and hence the rate of deformation was
relatively small.

More recently, interest has focused on flows of thermoplastic polymers reinforced with
continuous fibres. When these composites are heated until molten, the resulting fluid is also
transversely isotropic but in this case the axis of transverse isotropy coincides with the fibre
direction. Squeezing flows of these fluids can be used to consolidate and/or shape stacks of
preimpregnated plies. Experimental investigations of squeezing flows between flat plates [4]
which are used for consolidation of plies have found that the predominant mechanism is
shearing transverse to the fibre direction. A theoretical investigation of these flows under
frictionless, slip and no-slip boundary conditions has been reported [5] using the constitutive
equation for 'ideal linear fibre-reinforced liquids' [6]. Similar terminology was first applied in
the context of solid composites [7]; ideal models describe composites which are incompress-
ible and reinforced by inextensible fibres.

In this paper the stability of consolidation flow is examined by using a perturbation of the
basic solution for the frictionless squeezing flow of an ideal linear fibre-reinforced fluid [5].
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The analysis is aimed at predicting which stress boundary conditions lead to unstable flows.
This is of practical importance since such flows cause fibre wrinkling [8] and consequently
reduce the compressive strength of the finished product [9]. The technique of linear stability
analysis has been used recently to study steady-state flows [10, 11], but this paper is believed
to contain the first analysis of a flow of an anisotropic liquid whose unperturbed solution is
time dependent.

2. Governing equations

The equations are formulated in the rectangular cartesian coordinates xi with the velocity
components denoted by ui. The index i takes the values 1, 2 and 3 and the usual summation
convention applies to repeated indices. The fibre direction is represented by a unit vector a
which has components ai.

In the continuum model being used it is assumed that the fluid is incompressible and that
the fibres are inextensible. These two kinematic constraints may be expressed [7] as

Dii = 0, (1)

aaiajD = 0, (2)

where the components of the strain rate tensor are D defined as

Di = (aui iax + auj/axi) . (3)

It is also assumed that the fibres are locally parallel, continuously distributed and that they
convect with the fluid. Thus, a section of fibre always remains adjacent to the same fluid
element during a flow and this condition, together with the constraint of fibre inextensibility
yields [7]

aailat + u i aailaOx = a auilaxj, (4)

where t denotes time.
To complete the description of the ideal linear fibre-reinforced fluid a constitutive

equation for the stress is required. In general the stress may be written as the sum of an
indeterminate reaction stress oR and a determinate extra stress orE . The reaction stress arises
as a consequence of the imposed kinematic constraints and for ideal fibre-reinforced
materials it takes the form [7]

(rij = -Hisi + Taiai , (5)

where ij denotes the Kronecker delta. The first term denotes an hydrostatic pressure II and
the second denotes a fibre tension T which arises from the assumption of fibre inextensibili-
ty. This assumption is applicable to materials in which the resistance to motion in the fibre
direction far exceeds that in other deformation modes. It is appropriate for analysis of
squeezing flows since experimental evidence [4] indicates that comparatively little flow occurs
in the fibre direction.

The prefix 'linear' in the nomenclature 'ideal linear fibre-reinforced liquid' refers to the
assumption that the extra stress E depends linearly on the strain rate tensor D. There is
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some experimental evidence [12] to support this assumption of a linear dependence of extra
stress on strain rate at least for the slow flows. The extra stress also depends on the fibre
direction and because the sense of the fibres is inconsequential (the stress is unchanged if the
direction of the fibres is reversed) it is sufficient to assume a dependence on the product aiaj.
The form of the extra stress can be formally derived from consideration of tensor functions
of D, and aa j which are invariant under rigid body rotations. This gives [6]

E = 2,/TDq + 2(71L 7T)(ajakDk + Dikakaj). (6)

The transverse viscosity lT and longitudinal viscosity 'qL relate to shearing perpendicular to
and along the fibre direction, respectively. Typical values for a composite having re-
inforcement of 35% by volume are 1.3 x 103 Pa s and 2.0 x 103 Pa s [13]. There is some
evidence both experimental [13] and theoretical [14] to suggest that the relative size of these
viscosities depends on the proportion of reinforcing fibres, with a higher concentration of
fibres leading to a larger value of the transverse viscosity relative to the longitudinal
viscosity.

As noted above the reaction stress is arbitrary in the sense that it is not defined by a
constitutive relation. Rather the pressure and tension T are determined from the
equations of motion which in the absence of body forces take the form

doj/j axj = p(au/lat + Uj aui/axj), (7)

where p denotes the density of the composite. As in the chase of isotropic viscous fluids the
character of the flow depends on the relative magnitude of the inertial and viscous terms. If
U is a characteristic velocity and L is a characteristic length scale then transverse and
longitudinal Reynolds numbers may be defined as

RT = (ULp)/IqT and RL = (ULp)l1L. (8)

For the flows under discussion typical values of these parameters are

U=5mms ', L=5mm, p=1500kgm - 3 ,

and using the viscosities cited above gives

RT =2.88x10- 5 and RL=1.88x10 5 . (9)

Thus, the inertial terms may be neglected and the slow flow equations

aojlax = 0, (10)

are suitable for describing these flows. This assumption is used for the remainder of this
paper.

To complete the specification of the problem boundary conditions must be considered. For
viscous fluids the adherence condition is the almost universally accepted condition at solid
boundaries and it would be natural to extend this condition to the flow of anisotropic fluids.
However, there is experimental evidence [3, 4] to suggest that slip does occur during flows of
some composite materials. The most likely explanation of this is the presence of thin resin
rich layers which lubricate the flow when formed between the composite and the platen
surfaces. In addition to this 'natural' lubrication, artificial lubricants in the form of chemical
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release agents are often applied to the platen surfaces to ensure that the composite can be
removed easily after consolidation. It has been suggested [4] that these lubricated flows can
be modelled by applying slip boundary conditions in which the shear stress at a solid
boundary is proportional to the relative velocity between the fluid and boundary. In cases
where the boundary is frictionless the shear stress is zero at the boundary.

3. Consolidation flows

Figure 1 illustrates the flow being modelled. At time t = 0 the two platens are at rest in the
planes x2 = Ho and x2 = 0 with the viscous ideal reinforced liquid lying between the platens
and the fibres aligned parallel to the x3 -axis. For t > 0 the upper platen is pushed down by a
force acting in the negative x2-direction (of magnitude F(t) per unit length of the x3 -axis),
while the lower platen remains fixed. The dimension of the fluid in the x-direction is
denoted by 2L(t) at any time t and 2L 0 denotes its initial (t = 0) value.

If both platens are perfectly lubricated then the governing equations admit the homoge-
neous, time dependent solution [5]

u = (-Bx,, , 0), a = (0, 0, 1),

0l = -- 2 1TB, - 22 =- + 27ITB, 33 =-II T, (11)

012 = -13 = 023 = 0

where

B(t) = H/H, L(t) = LoHo/H( t) .

The superposed dot denotes differentiation with respect to time. The expression for L(t)
follows directly from incompressibility.

The solution for the hydrostatic pressure is obtained by satisfying the traction boundary
conditions at the edges xl = +L(t). If these edges are traction free then

II = -2YTB. (12)

If it is further assumed that there is zero traction on the edges (x3 = constant) normal to the
fibre direction then the fibre tension T is

F(t)
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0 7
· · 2L·· i)I'-0 

Fig. 1. Consolidation flow of a fibre-reinforced composite.
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T = -2 %B(t) - -2,Ttl/H. (13)

From this result it follows that squeezing flows (in which H is negative) induce a positive
value for T. Although this result has been obtained for the special case of zero applied
tractions acting on the edges normal to the x1 and x3 -axes it remains valid for any values of
these tractions which are equal.

The separation H(t) of the platens can be related to the applied force F(t) acting on the
platen surface x2 = H(t) by integration of the stress component o22. Using the solution for
the pressure in equation (12) this gives

H(t) = 8ITLOHO (14)
871 L + '~ F(r) dr

4. Stability analysis

It is well known that in the preimpregnated plies (prepregs) which are the precursor material
used in squeezing flows the fibres are not perfectly collimated; off-axial deviations of up to 6°

have been reported [15]. The ensuing analysis examines the effect of frictionless squeezing
flows on these imperfectly collimated fibres. It is particularly important to determine whether
such flows tend to improve the alignment or the fibres of cause greater misalignment since
poorly collimated fibres lead to a reduction in strength of the finished product [9].

It is assumed that the magnitude of the initial fibre misalignments is small and so can be
represented by a small dimensionless parameter e. The variables can then be expanded in
perturbation series of the form:

u = u°(x,, t) + euI(xi, t) + o(e 2 )

a = a0 (xi, t) + a(xi, t) + O(e 2 ),

II = HII(x,, t) + eHI(xi, t) + O(E
2
),

T= T(xi, t) + eT1 (xi, t) + O(e2 ). (15)

The first terms in the series may be regarded as the solutions for perfectly collimated fibres in
which e = 0; such solutions are given in equation (11). The second term in the series
expansion of the fibre direction vector represents a small perturbation in the fibre direction.
This in turn causes perturbations to the basic velocity, pressure and tension fields. Terms of
second order and higher in E are neglected.

It follows from the definition of a as a unit vector and the solution for a° given in equation
(11) that a is zero. Also since the fibres are assumed to convect with the fluid no first order
perturbation in velocity occurs in this direction and so ul = 0. The squeezing flow inhibits the
development of any perturbations in the x2 -direction and so solutions are sought for which

u2 = a2 =0. (16)

Then the only non-zero first-order terms are u and a. The incompressibility condition
requires that u must be independent of x1 . Furthermore, the fibre perturbation component

a1 is chosen to be independent of x1 .
Real samples often exhibit a wavelike disturbance which can be approximately modelled
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as a sinusoidal variation in the direction of the unperturbed fibres [9]. Following this
approach non-zero perturbations are sought of the form:

Ul(X2 X3, t) = U*(X 2, t) sin(kx3) ,

al(X2, X3, t) =a *1(X2, t) cos (kx 3 )

l(x21, x 3, t) = *(X2, t) cos(kx 3 ),

T1(x2, 3 , t) = T*(x 2, t) cos(kx3 ) . (17)

The wavelength of the disturbances is 2rlk where k is a real number.
The governing equations for the first order perturbations are obtained by substituting the

series described in equations (15) and (17) into the convection equations (4) and the slow
flow equations of motion (10), and then equating terms of O(E). The only non-trivial first
order convection equation provides a relation between the components a and u of the
form

aa / at + B a(x2a*) lax2 = ku* . (18)

The first of the equations of motion (10) leads to a second relation between these
components

7T a 2 u / - k rLu T - 2 B(rL - T)}a = 0, (19)

while the second and third equations of motion are satisfied by choosing

Il* = T* =f(t), (20)

where f(t) is an arbitrary function of time.
Equation (18) can be used to eliminate u from equation (19) to give the third order

partial differential equation for a*

r 2 2 fa a(xa*) 2
T aX2 k JI ata +B ax - {T -2B(,qL -T)}k 2a =0. (21)

The time dependent behaviour of the solutions of this equation provides information about
the growth-decay of the first order fibre perturbations. Two solutions are now considered.

4.1. Solution independent of depth

Equation (21) has a time dependent solution a(t) which satisfies the equation

71L dal/dt + {TO + B( 2 r1T -7L)}a* = 0. (22)

Integration of this equation yields the solution

a (t) = P(t) = CIl(t) , (23)

where C1 is a constant and the integral 1l(t) is
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II(t) = (-1/L) {T + B( 2 nT -*L)} d-. (24)

This integral can be rewritten in terms of the unperturbed stress components by making use
of solution (11) to give

1 t 0 0 0
II (t) = 47 ({4'qT(oS1 - 33) + 71L(722 - D1)} d . (25)

The non-zero velocity component uI is determined directly from equation (18) as

u = (CI/k*IL){2B(rlL - NT) - T}O) exp{(t)} . (26)

It then follows from equations (17) and (20) that the full solution is:

1 11aI = C, cos(kx3) exp{I(t)} , a2 = a3 = O,

u1 = (Cl/ k - L) sin(kX3 ){2B(jL - 'T) - TO} exp{I,(t)} , u2 = u = 0

fI = T =f(t) cos(kx3 ) . (27)

It is clear that the stability of the flow depends on the integral I (t) defined in equations (24)
and (25). It follows from the latter equation that varying the zero order hydrostatic pressure
has no effect on the stability of the flow. Rather the growth or decay of the sinusoidal
perturbations depends entirely on two normal stress differences which may be conveniently
defined as

N1 = '1 1 = C03 N2 = 022 - 11 (28)

Using these definitions it follows that if

47TNl + 7LN 2 < for all t>0,

then the flow is stable, and if

47TN 1+ 77LN 2 > for all t > 0,

then the flow is unstable.
0If the value of the applied normal stress component o-33 which acts in the fibre direction is

increased and the value of the normal stress component o0 is kept fixed, then the normal
stress difference N will decrease and the flow will become more stable. This result is in
agreement with intuitive reasoning which suggests that the application of increasing tensile
forces in the fibre direction should tend to reduce the fibre wrinkling.

Now consider the effect of the normal stress difference N2. It follows from equations (28)
and (11) that

N2 = 422 - = 41TB = 4%lTfIH . (29)

Thus, if all other factors are equal, wrinkled fibres in a sample undergoing consolidation with
a high squeezing rate (that is a large negative value of H) will be straightened more quickly
than those in a sample which is consolidated with a low squeezing rate.

In consolidation flows in which the only non-zero applied force is acting in the x2 -direction
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the value of the unperturbed tension T is given by equation (13). It then follows from
equation (24) that the integral 11(t) becomes

11(t) = B dr = (HIH) dT = ln{H(t)/Ho} . (30)

In this case the amplitude of the fibre wrinkles exhibits exactly the same time dependent
behaviour as the platen separation H(t). Thus, closing the platens quickly will cause the
amplitude of the fibre wrinkled to decrease quickly. If a squeezing force of smaller
magnitude is applied the platens will close more slowly and hence the fibres will straighten at
a slower rate. However, if two initially identical samples are squeezed to the same final
dimensions then the extent of the fibre wrinkling in the consolidated samples will be the
same.

Experiments carried out by Jones and Roberts [16] using a model composite are in
qualitative agreement with the predictions of the depth independent solution (27). Their
experiments were carried out under atmospheric pressure with a squeezing force applied in
the x2-direction. It was found that when the platens were lubricated, artificially wrinkled
fibres which were present throughout the sample all straightened out.

4.2. Solution linear in x2

Equation (21) also has a solution which is linear in x2 of the form

a* = x2Q(t) (31)

Substitution of this solution into equation (21) yields the first order differential equation for
Q(t)

7L dQ/dt + (T + 2B/T)Q = 0, (32)

which can be integrated to give

Q(t) = C2 exp{12(t)}) , (33)

where C2 is a constant and the integral 12(t) is

12 (t) = J {T + 2BT} dr,

= 71 (o -- 3 3) d =-i N d . (34)

The full solution for this mode of fibre wrinkling is:

al = x2 C2 cos(kx3 ) exp{12 (t)}) , a = a3 = 0,

1 x 2C 2 sin(kx3){-To + 2 B(1L - T)) exp{I2(t)} l
U1 = kn. , U2 =3 =0

l 1 = T l =f(t) cos(kx3) (35)
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The function f(t) is arbitrary.
In this case the stability of the flow depends only on the normal stress difference N. which

is defined in equation (28). The stability conditions for this mode are that if

N, <0 for all t>0,

then the flow is stable, and that if

N,>O for all t>0,

then the flow is unstable.
In the case when the normal stresses o1 and or33 are equal, as happens when the only

applied force acts in the x2-direction, the stress difference N becomes zero and the
behaviour of the perturbations is time independent. In such flows any wrinkles which are
initially present in the plies remain unaltered by the consolidation process. It is noted that
the stability criteria are independent of the squeezing force, that is the force applied in the
x2 -direction.

The solution (35) which is linear in xl describes the stability behaviour of a sample which
initially has an inhomogeneity which is linear in x2. The magnitude of this inhomogeneity
need only be small, that is, of order epsilon. Such a case could be realised in practice if the
laminate is assembled from several different plies of preimpregnated material since different
plies could possess different degrees of fibre wrinkling due to variability in their manufac-
ture.

5. Conclusions

Two solutions have been found for the first order perturbation equations governing the
frictionless squeezing flow of ideal fibre-reinforced liquids. In the first mode the sinusoidal
fibre wrinkles are time dependent and independent of distance from the platens. In this
mode the stability depends on two normal stress differences. If the traction applied in the
direction of the reinforcing fibres exceeds that which acts in the direction of the elongational
flow, and if this in turn is greater than the traction acting on the platen surface, then the flow
is always stable. The special case, widely used in practical applications, in which the
squeezing is caused by an applied force acting only in the vertical (x2 ) direction has been
found to straighten the fibres irrespective of what magnitude of squeezing force is applied.
Experimental results are in qualitative agreement with the predictions of this perturbation
mode.

The second mode describes the behaviour of a sample which is initially inhomogeneous. If
the inhomogeneity varies linearly in the vertical direction the stability of the flow depends
only on the difference between the two normal stress components in the plane of the plies.
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